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The method of loca! corrections {MLC) developed by Anderson for
two spatial dimensions is a particle-particle particle—mesh method, in
which the calculation of the velocity field induced by a collection of
vortices is split into two parts: (i) a finite difference velocity field
calculation using a fast Poisson solver, the resulis of which are used to
represent the velocity field induced by vortices far from the evaluation
point; and {ii) an A-body calculation to compute the velocity field at a
vortex induced by nearby vortices. We present a fast vortex method for
incompressible flow in three dimensions, based on the extension of the
MLC algorithm from two to three spatial dimensions and the use of
adaptive mesh refinement in the finite difference calculation of the
MLC. Calculations with a vortex ring in three dimensions show that the
break-even point between the MLC with AMR and the direct method
is at N =~ 3000 on a Cray Y-MP; for N = 64,000 MLC with AMR can be
12 times faster than the direct method. Results from calculations of two
colliding inviscid vortex rings demonstrate the increased resolution
which can be obtained using fast methods,  © 1994 Academic Press, inc.

INTRODUCTION

Vortex methods are used to approximate time-dependent
incompressible flows. They are particle methods based on
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the Lagrangian formulation of the flow equations, in which
vorticity is the gquantity carried by the particles. The con-
figuration of vortex clements at a given time determines the
velocity field via an N-body Biot-Savart calculation, which
is then used to update the positions of the vortices. In three
dimensions, the vorticity itself must be updated as well.
Vortex methods are especially useful for flows which are
dominated by localized vorticity distributions, e.g., shear
flows, wakes, and jets, In these flows most of the vorticity is
confined to a relatively small portion of the flow, and then
a method based on following the vorticity can be very
economical.

Point vortex methods were first introduced by Rosenhead
in 1931 [25]. A general stable vortex method suitable for
high Reynolds number and inviscid flow calculations in two
and three dimensions was developed by Chorin [14, 15];
see also Leonard [23]. Convergence of these methods has
been established [3, 8, 9, 18, 207].

The usefulness of these methods has been seriously
limited in the past by their cost. The accuracy of the
methods and their ability to resolve small scales increase
with the number of particles, N, as does the time and
expense. The cost of the N-body calculation is O(N?), mak-
ing it prohibitively expensive for relatively few vortices (on
the order of thousands). Fast vortex methods have been
developed to try to maintain the accuracy and adaptivity of
the standard vortex method while increasing the speed.
These fast methods approximate the O(N?) velocity
calculation with a fast calculation whose cost is O(N log N)
for large N.

One of the earliest fast techniques used to approximate a
particle method is known as cloud-in-cell. In this method,
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the N-body calculation is replaced by a finite difference
Poisson solve, with no distinction made between the fields
due to nearby versus distant particles. A second type of fast
method is known as PPPM, for particle-particle par-
ticle—-mesh. This incorporates the idea of separating the
calculation into a far-field component, which can be
caiculated on a grid, and a ncar-field component, which
must be calculated directly. In the PPPM method these two
components result from distinct forces. See Hockney and
Eastwood [21] for a discussion of these two methods and
their limitations. A different type of fast method is based on
the hicrarchical structure known as a treecode; see Barnes
and Hut [7]. This method groups particles spatially before
computing approximte interactions. A more systeratic
approach to this hierarchical ordering is the fast multipole
method developed by Greengard and Rokhlin [13,19],
which approximates the velocity field using a muitipole
expansion of the stream function (in two dimensions).
Anderson [27 developed an “implementation of the multi-
pole method without multipoles,” based on the same prin-
ciples as the fast adaptive multipole method, but using a
representation by Poisson integrals rather than multipoles.
Van Dommelen and Rundensteiner [27] have presented a
method also similar to the adaptive multipole method, but
with Laurent series rather than Taylor series, and using a
different algorithm for the sorting and coilecting of vortices.

We present here an extension of a different fast vortex
method known as the method of local corrections (MLC).
In the MLC, developed by Anderson [1] in two dimensions
and here extended to three dimensions, a uniform grid is
introduced on the computational domain enclosing the vor-
tices, and the velocity field is calculated on that grid. A
corrected form of this velocity is then interpolated onto the
vortices, and local interactions are calculated directly.
This is similar to previous PPPM algorithms, but it differs
in one important respect. The MLC algorithm more
accurately separates the local N-body effects from the far-
field solution as represented on the grid; in particular, the
interpolation from the grid is performed on values that are
discretely harmonic.

While the MLC is faster than the standard vortex
methods for N in the thousands, there is further efficiency to
be gained by using adaptive mesh refinement (AMR)
[10, 11, 24] on the grid. The accuracy of the MLC has very
weak dependence on the mesh spacing of the computational
grid used to calculate the far-ficld veiocity, as long as the
mesh spacing is sufficiently larger than the intervortex spac-
ing and small enough that the method does not reduce to
the {N?) method for most vortices [5, 6]. Thus, within
these limits, the mesh spacing can be chosen solely on the
basis of timing considerations. With the use of adaptive
mesh refinement, the mesh is refined where the vortices are
most concentrated, thereby reducing the time spent in local
interactions, while increasing as little as possible the cost of
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solving the Poisson equation. This adaptivity is even more
important in three dimensions than in two, because vor-
ticity is often limited to a smaller fraction of the domain in
three dimensions. The improvement in timing by using
AMR with the MLC can be substantial; for example, for a
vortex ring in three dimensions with N 64,000, the
speedup of the MLC with AMR over the uniform MLC is
approximately three; the speedup of MLC with AMR over
the standard vortex method is approximately 12.

THREE DIMENSIONAL VORTEX METHOD

Vortex methods are based on the vorticity-stream func-
tion formulation of the Euler equations for incompressible,
inviscid fluid flow [167,

Do Jdo
E—a+(u-V)m—(va)u,
0=V xu,

where @ is the vorticity, u is the velocity. The velocity u is
known from the stream function ¥, which in turn can be
found from the vorticity:

u=Vx ¥, ¥=—(4) "o

Following Chorin [15], we discretize the original vor-
ticity field into N nonsingular computational elements,

N

o(x, f)= 3, a0 f(Ix—x7(1)])

i=1

= Y I LD f(1x —xF(@D)1),

i=1

where I',, I, @,=TI1; and x° are the circulation, vector
length, strength, and location of the center, respectively, of
the ith vortex segment, and f4(r) is the core function with
core radius J:

3
filr)= W
0 for

for r<d
rzd.

We require that the integral of the core function over the
region of its support be unity; this accounts for the 3/4n
seen in the expression. This core function has been shown
to give second-order convergence of the standard vortex
method [4].

To initialize the method, for nonperiodic problems we
first choose a finite number of closed vortex curves within
the flow to approximate the support of the vorticity at 1 = 0.
Each curve is then approximated by a N -sided polygon,
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where N, is the number of segments per filament. Each side
of the polygon now represents one segment in the filament.
The endpoints of the vortex segments are the vertices of the
polygon, and the centers are defined as midpoints of each
pair of adjoining vertices. This is similar to placing the cen-
ter of a vortex segment on a vortex curve and aligning the
segment with the curve at that point, but this latter method
would have to be followed with an algorithm to connect
adjoining segments. The initialization .we use guarantees
connected segments. In summary, the relations satishied by
the top, bottom, center, and length of the ith segment (x],

x¢, and x?, and 1, respectively) are
x7(0)—x2(0)=1,(0),
1(x7(0)+x7(0))=x7(0).

We advect the positions of the vortex endpoints accord-
ing to

defB

() =u(x"®(r))

using the second-order time-stepping procedure

xX=x7+u{x?) At
X1t =x7+0.5(u(x7)) +u(x*) 4¢,

where X7 x;(n 41), x7 ' & x;((n+1) 47). Once the loca-
tions of the top and bottom of each segment are updated,
the center points must be redefined as well:

X,—C’n+l — %(XT n+1 +XB n+l)

The velocity field induced by all the vortex elements is a
linear superposition of the velocity fields due to each vortex
element, which are found using the Biot—Savart law. We can
invert the expression w = V x u using the stream function ¥,

to find u from ®. The infinite domain Green's function for
the three-dimensional Laplacian is

where r = . /x* + y* + 2% The kernel K(x) = V x G satisfying
Vx(G*aw)is

and the velocity u is given by u=K * «. Substituting the
discretization for e, we find
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N
u(x, 1) =z I;(0)(K(x —x5(t))

J'

fa)l(f)

N
Z (DK s(x —xF(0)) L(0),

where we now define the desingularized kernel K; =K * f;.

Substituting the core function and the discrete
desingularized kerne] explicitly, we see that the velocity field
at x due to a single vortex segment with center at x,, circula-
tion I, and length 1=(I_,/,, 1) is

ys iz

r
= (L(z=zo) =Ly = po)) A(r),

r
v Ul —x) — L (2

zq)) A(r),
r
W= Ly = yo) = L(x —~ x0)) A(r),

where

The circulation I'; of each segment is initially determined
as the integral of vorticity across the cross-sectional area
represented by the ith segment. The strength of each seg-
ment is then defined as its circulation times its length,
@, = I'}l,. These segments are pieces of vortex lines in the
flow (vortex lines are simply defined as curves tangent to the
vorticity). By the Kelvin circulation theorem we know that
circulation around vortex lines is constant in time, and so
the circulation of these computational elements can be held
constant in time, ie,,

DIty
Dt

However, the lengths 1, of the segments change as the
endpoints move, and so the strength of each vortex evolves
as well. Note that the stretching term in the original equa-
tion is implicitly incorporated by the relative motion of the
endpoints of the segments.

Since the divergence of the curl of a flow field is identically
zero, we know that vortex lines cannot end in a flow;
they must be closed curves, extend infinitely, or end on a
boundary in inviscid flow. For our computations without
boundaries (using infinite domain or periodic boundary
conditions ) we initialize the vorticity into segments connec-
ted in closed filaments, with each filament a discrete
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approximation to an integral curve of the vorticity. In that
case, x;_,=x7}, for segments i— 1,  located on the same
filament. Vortex segments, once connected, will remain
connected for all time, and for N vortex segments there are
only N rather than 2N independent endpoints.

One consequence of the variabie lengths of the segments
is that as the vorticity in 2z region of flow increases, the
lengths of the segments may become disproportionately
large. Thus, as part of the algorithm, we check at each time
step whether the segment lengths have exceeded a preset
critical length. If they have, we divide the long segments in
half, giving cach new vortex the same circulation as the
original vortex. This can result in the number of vortices
growing rapidly as the calculation proceeds, The critical
length is defined for each segment as twice its initial length.
Newly created segments inherit the same critical length as
their “parents.”

METHOD OF LOCAL CORRECTIONS IN
THREE DIMENSIONS

The MLC is 2 method which reduces the cost of caiculat-
ing the velocity at the vortices. The goal of the MLC is to
replace the full O(N?) velocity calculation with a fast
calculation whose cost varies as O(N log N) for large N.
This is achieved by separating the velocity calculation into
several steps: calculation of the far-field velocity on a grid,
interpolation of a corrected form of this velocity from the
grid onto the vortices, and calculation of local interactions
between nearby vortices. The algorithm is sketched below,
and the details of the sorting follow.

(a) Find at every grid point i a field g which satisfies
gl (4",

Here 4" is the discrete Laplacian operator with mesh spac-
ing #; u®” is defined as the exact velocity field induced by the
vortices at grid point i, calculated as if these were point
vortices,

{b) Solve

A"a=g”
for the velocity @ on the grid with appropriate boundary
conditions.

Note that if g¥ were defined exactly as the discrete
Laplacian of the velocity due to every vortex at every gnid
point and if the boundary conditions were specified exactly,
then {i,=u?" at every grid point to within the specified
precision of the Poisson solver. However, this is greater
accuracy than is needed (since other errors in the method
would swamp this error), and so in the MLC the discrete
Laplacian is approximated rather than computed exactly at
every point. The contribution of each vortex to g is defined
as exactly 4"u** near the vortex, but it is set to zero at grid
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points far from the vortex. We thereby approximate the
value of the discrete Laplacian with the value of the exact
Laplacian, which is zero at every point away from the vor-
tex since the velocity due to a point vortex is harmonic. The
error of the approximation is just the error of the discrete
Laplacian for a harmonic function, which is proportional to
the higher derivatives of u™*, These derivatives fall off
rapidly away from the vortex.

{c) Interpolate a corrected form of this grid velocity
onto the vortices. The field induced by the nearby vortices
will be included in an explicit sum in the last step, so first the
effeect of these vortices in the interpotated velocity feld is
removed. This is done by subtracting the contribution of
these vortices to the velocity on the grid prior to interpola-
tion. Then this corrected velocity field is interpolated onto
the vortices. Note that since the effect of the nearby vortices
is entirely eliminated from the interpolated veiocity for
C =D, this field is discretely harmonic.

(d) Finally, add the velocity due to the nearby vortices
to the velocity interpolated from the grid in a direct sum
using the desingularized kernel, so as to achieve higher-
order accuracy.

In the above algorithm we need a mechanism for dis-
tinguishing between “near” and “far” vortices. This is done
by sorting all of the vortices into “bins™ at the beginning of
each time step; this sorting is based on the locations of the
vortex segment centers. The centers of the bins are placed at
the grid points, and each bin is defined as the box of width 4
around that center. Then all sorting of near and far vortices
and near and far grid points is done using the bin indices.

Let @=1[0, 1]° be the physical domain of the problem.
Define 2 uniform grid G° of M* points on {2, with mesh
spacing h = 1/M. Define B' as the bin centered on the point
ih, and define the |- |z norm such that |i —m| is the mini-
mum distance (in units of the mesh spacing} between any
point in B' and any point in B™. Around every grid point
now define R and R}, as

Ri= U
m:m—ilgg(D+1)
Rl = B™,

m:m—ilgg D

B8,

where D is called the spreading distance.
Step (a), the construction of g, can be broken down into
two parts:

(1) For each i in the interior of £:

(i) compute by direct interaction the exact veiocity
at every grid point m in R due to every vortex # in B', as if
each vortex were a point vortex:

ui'= Y Kimh—x,) e,

7 x, € Bl
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(ii) Calculate the Laplacian of this velocity field at
every point in Ry Define

i f4"u""  inside R|,
270 in interior(£2) — R},

Note that g' is defined on the interior of the entire domain,
but it carries information only about the vortices in B,

{2} Superimpose these fields g' to form

gn - Z gi.

i € interior(£2)

Note that the work to represent the velocity field on the
entire grid due to all the vortices breaks down as follows: for
each vortex, evaluate the exact velocity in a subset of the
grid; for each bin of vortices, evalute the Laplacian at an
even smaller subset of the grid; for the whole domain (i.e.,
only once} solve the equation A%ii = g*.

For the local corrections step, around each grid pointi
define

B™,

si=

m:lm—-HggC

where C is called the correction radius. If C =D then
S'=R}. A vortex p in bin B'is defined as near to a vortex k
in bin B'if B'is in §4. Note that p is near & implies that &
is near p (this is not necessarily true when AMR is added to
the MLC). This part of the calculation ((c) and (d}) is per-
formed one bin at a time. For each i such that B' contains
vortices:

{1} Define the points to be used in the interpolation
stencil {X,,}, m=1,.., N,. Compute by direct interaction
the exact velocity at each point X, due to every vortex in S7,
as if each vortex were a point vortex, and subtract this field
from the existing velocity at these grid points:

ﬁi(xm) = ﬁ(xm) - Z K(Xm - xn) w,.

nixpe S

Note that &' and @/, i # j, might both be defined at a grid
point X but would have different values because S’ and S1
contain different vortices.

(2) Interpolate this corrected field &' from the interpola-
tion points X,, onto each vortex p in B":

u(xp) = I(ﬁ](xl)1 vy ﬁi(XN[); xp)‘

After this interpolation, the velocity of every vortex in B, is
due only to the vortices outside S;.

(3) 1n this final step, every local interaction is calculated
directly, incorporating the higher-order shape functions.
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Add the velocity due to every vortex » in §; to the existing
velocity of every vortex p in B; using K; rather than K:

u(x,)=u(x,)+ » Kix,—x,)0,

H:xp e S

In summary, the velocity at vortex p, located in bin B,
can be written

ux, ) =I5 x,)+ Y Kix,—x,)ea,.

#:xy & St

There are a number of parameters which affect the
accuracy and cost of the MLC. We distinguish here between
the error inherent in using a vortex method to approximate
the solution to the Euler equations and the error which
results from approximating the standard vortex method
with the MLC.

The first type of error, that of the vortex method itself,
depends on the intervortex spacing, the core function, and
the time step. The second type of error, that of approximat-
ing the standard vortex method with the MLC, can be
separated into two parts: (a) the error in representing the
velocity on the grid, and (b) the error in interpolating the
corrected velocity from the grid onto the vortices. The first
error results from approximating the value of the discrete
Laplacian of the velocity due to a vortex element by zero
away from that element; this error depends on the spreading
distance D, As D increases for constant grid spacing 4, we
make this approximation on fewer points farther away from
the vortex element, and thus in the limit D= M this error is
machine zero (assuming that the Poisson equation has been
solved to this precision). The second error results from
interpolation. For constant A, as we increase the correction
radius C we are interpolating not only a smaller fraction of
the total velocity field (since the velocity we are interpolat-
ing is due to fewer vortices}, but also a smoother function,
since the corrected velocity is due only to vortices outside
the correction radius. Thus as C increases the interpolation
crror goes to zero, and in the limit C= D= M the MLC
effectively reduces to the standard vortex method.

Parameter studies in two dimensions by Anderson [1]
show that the error in vortex positions calculated at finite
time using the MLC with C and Dintherange 1 < C, D <4
is comparable to the error of the solution computed using
the direct method. The relative error is less than 3% when
C=D=1, and less than 0.2% when C =D = 2. Parameter
studies by the authors show similar results for three-dimen-
sional calculations. Thus for our caiculations we choose
C=D=15, which is borne out by the results of Ander-
son [[1] and Baden [5, 6] and our own studics to give suf-
ficient accuracy. By sufficient accuracy we mean that the
errors due to using the MLC to approximate the direct
method are significantly smaller than the errors due to the
vortex method discretization.
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The principal difficulty in extending this algorithm to
three dimensions is the construction of a suitably accurate
interpolation scheme. In two dimensions, Anderson exploits
the fact that the velocity induced by a vortex is a potential -
flow field away from the support of the vorticity to write the
velocity components as the real and imaginary parts of a
complex analytic function. He then uses complex polyno-
miai interpolation to construct /, an interpolation function
with a highly compact stencil relative to its accuracy. In
three dimensions, we seek to mimic Anderson’s algorithm
by defining an interpolation stencil which is fourth-order
accurate, but the velocity induced by a single vortex seg-
ment is not a potential flow field away from the support of
the vorticity. However, the velocity field is divergence-free,
and the Laplacian of each of its components vanishes. We
take advantage of these features to construct an accurate
interpoiation function with a compact stencil. Note that,
since the velocity field which is interpolated results only
from far vortices, the higher derivatives of u do exist and
remain finite as N increases, since for fixed C the ratio of the
distance of the nearest vortices to the distance between
interpolation points remains constant.

Consider that we want to interpolate a scalar function u
onto position {x,, ¥4, ) from an interpolation stencil cen-
tered at grid point (i, j, k) of a uniform grid with mesh
spacing /. Assume that (x,, y,, z,) lies closer to (ih, jh, kh)
than to any other grid point. Define x = x, — ik, y = p, — jh,.
z=zy—kh We see that x| < A/2, |y| < A/2, 2| < 42 Using
a Taylor expansion, we can write

w(Xg, Yo, Zo) = ulih, jh, khY+ xu, + yu, +zu,
+ 3 (U + yu,, + 2u,,)
+ xyu, + yzu,. + Xzu,;
+ _é(x:iux.tx + y3uyy_v + 23uzzz)
+ (XU + XU, + XU
+ x2% o + YP2U, + y2U)
+ X¥zZU . + O,
where u, = du/ox, u,,= 8*u/dx dy, u,,, = 3*u/dx dy 0z, and
so on. All derivatives here are evaluated at (ih, jh, kh).
To create a fourth-order interpolation scheme, we must
approximate the first derivatives to OQ(4’), the second

derivatives to O(h°), and the third derivatives to O{%), since
x, ¥, and z are of O(h). For example, we define

T

N L TN TR L o TR NS o FE NS of PR R

N T TR b o AN o PN IR L o PR
(et _ o— :

fo=(s] =53 +2(“f+1,j.k_uiﬂ,j,rc))/(uh)s

with £, /. defined in a similar fashion. If we Taylor-expand
each term in the above expressions for f, f,, f. about
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{ih, jh, kh), we see by cancellation of the zeroth and ail the
first- and second-order terms that these are third-order
approximations to the first derivatives u,, u,, u,.

For the second and mixed third derivatives, we use
standard finite difference approximations. For example,

Fee= ey ¥ o i — 2 u R
ft}-= (g = Misy jers)
_(ui+l,j—l.k_ui—l,j—l,k))/(4h2)
oo = Whig e =28 5000 F Ui 10k)
=iy o~ 28k T U L)) (2h%)
fx_v:: (((“f+1.j+ Lkt 1= 8o ot k+1)
(M1 ks~ Uit 1k + 1))
- ((”i+x,j+1.k—x"“s—x.jﬂ.k—x)
- (HH»l;j—l‘k—l_ur'-l,j—l,k—l]))/(gha)'
Instead of approximating £, by the first dertvative in x
of .., which would increase the width of the stencil, we use

the fact that  is a harmonic function to obtain an expres-
sion for it in terms of the mixed third derivatives,

u —u

xxx = ( vy uz:)x = Uy T Uy

The interpolation scheme, in terms of the terms defined
above, can be written

w(xo, Vo, 2o) = ulih, jh, kh) + 3/ + yf, + 21,
+ 3+ Y+ 2L)
+x¥f o+ yefy + xzf
+ (3% =y oy + (37 =2V 2f
+3y* =) Xy + (32— 2%) 2f,y
+ (327 - X)X + 320 = ¥ )
+ xpzf,.. + O(h*).

ADAPTIVE MESH REFINEMENT

The accuracy of the MLC has very weak dependence on
the mesh spacing of the grid used to calculate the far-field
velocity, as long as the mesh spacing & is sufficiently larger
than the intervortex spacing k, [ 5, 6] and sufficiently small
that the method does not reduce to the O(N?) calculation
for most vortices. Thus, within these limits, we can choose
the mesh spacing by timing considerations alone. The goal
of AMR with MLC is to reduce the cost of the local correc-
tions by creating smaller bins in regions where the vortices
are concentrated, while increasing as little as possible the
cost of solving the Poisson equation.
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Adaptive mesh refinement introduces a hierarchy of levels
and grids. A grid G is defined by the set of points, uniformly
spaced by h, in each coordinate direction, which cover a rec-
tangular subset of the domain, The level / of a grid is defined
as the log, of the ratio of the grid spacing of the level 0 grid,
hy, to the grid spacing #,. The ratio of h,_, to h;is called the
refinement ratio of level . Here we consider refinement
ratios of two. For the sake of exposition, we will assume in
the following discussion that there is only one grid at each
level. However, this is nor assumed in the impiementation,
although it is the case in computation presented,

Let us define here a hierarchy of grids on levels
{=0, .., {n., Where G° is the base grid, as defined in the
uniform grid MLC, and G™= is the grid at the finest level
Inax. Only the base grid G° is defined over the whole
domain £2; all finer grids cover only some subset of £2. Grids
at different levels are aligned so that each grid point in a
level I grid (for /> 0) with even spatial indices is at the same
physical location as a grid point at level /— 1. Thus the
points, or bin centers, are coincident, but note that this
implies that the faces of the bins are not.

We now define a composite grid as a union of grids at
different levels, with each finer grid nested inside the next
coarser grid, i.e.,

GG, 1<ig!

max*

The composite grid G%* is defined as

t
G¥'=1) G-
i=0

Each vortex is sorted into a group V/, where / is the
highest level at which there exists a grid such that the vortex
is properly contained in G'; i.e., a vortex in V' must lie in the
interior of G’ and at least & + 1 bins from the boundary G/,
where b=max(C, D). This ensures that the MLC can
properly represent the right-hand side of the Poisson equa-
tion and perform the local corrections correctly on the
level { grid for a vortex in V.

The velocity due to a vortex in V' is represented on the
composite grid G®. The MLC is performed once on G for
each level /=0, ..., /... The right-hand side for the Poisson
equation is defined using only vortices in ¥/, and boundary
conditions due only to vortices in ¥/ are defined on G° The
Poisson equation is then solved on G° as described below,
generating a velocity field i on each G™, 0 < m < I, of G°**.
In our notation, the velocity "™ results from vortices at
level / and is defined on a grid at level m. Note that because
the Poisson equation is solved separately for each group of
vortices ¥, the right-hand side is only nonzero on G'; else-
where in the domain it is set to zero. The velocity is then
interpolated onto all vortices, with local corrections done
only on G’ This procedure is repeated for all ievels,
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0gi<l,,,. adding the contributions from each set of vor-
tices V' until the velocity of every vortex p due to vortices at
all levels has been calculated. We can express the full algo-
rithm as

!max
u(x,) =3 wi(x,),
I=0
where
@ x,) if m<l

wix,) =< "0 x,)+ 3

ke Viknear p

Kd(x, —x;) 0,

if m=I1

and

L)

ke V\knearp

K{x,—x,)®,.

The level m2 at which the interpolation is done is the finest
level such that m < { and x is in the interior of G™. The inter-
polation stencil I™ is composed of points in G™ with
spacing h,,. Note that the vortices in ¥/ correct only the
velocity &' on G'; grid points in G' are the only points
within a distance Ch; of the vortices in V",

We include here error measurements from a calculation
of a vortex ring in three dimensions. The relative L, error of
the velocity field is shown in TableI for ¥=8011 and
N =16232. The first column in this table specifies the level
of refinement; “16” refers to a uniform 16° grid, “16-32”
tefers to a 16° base grid with one level of refinement above
that (so that the finest level has i = ), and so on. The ring
has a radius of 0.1 around the z-axis and cross-sectional

TABLE I

Relative £, Norm of the Error in Velocity for
Different Levels of Mesh Refinement

Relative L, error

Level 16232 vortices 8011 vortices
16 7.le-d4 7.8¢-4
16-32 6.9¢-4 7.7e-4
16-64 7.5e-4 8.2¢-4
16-128 7.6¢-4
32 7.1e-4 7.8¢-4
32-64 7.5¢-4 8.2e-4
32-128 7.6e-4

Note. Calculations for a three-dimensional vortex ring of radius 0.1
around the z-axis and cross-sectional radius (.02, Here § = 4%7,
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radius 0.02. Here we sec evidence that the accuracy of the
MLC, with or without AMR, shows very little dependence
on the variation of the mesh spacing.

MULTIGRID WITH AMR

The stencil of the three-dimensional discrete Laplacian is
presented below [17]. Consider the cube of 27 points
(i+s)=(i+s5,, j+5;, k+53) |5)<]1, immediately sur-
rounding the pointi. Define face points on the cube such
that [s, |+ ls,{ + |s4| = 1. Similarly define edge points by
s |+ (54| + 551 =2, and let corner points be those satisfying
|s |+ [s20 + [53] =3. Then the 27-point Laplacian can be
written

128 1
S htip X

corner points

1 7
+T6 Z ui+s+l_5—face§ﬁms Hi+£)'

edge points

The MLC requires the solution of the Poisson equation,
A"ii = g® on the grid G° = [0, M]? covering the domain 0,
where M is assumed to be a power of 2. We use multigrid
{12] with Gauss—Seidel relaxation, red-black ordering, and
V-cycles to solve this equasion. Multigrid is a multilevel
relaxation method; i.e., it solves the equation Lu®=p° by
iterating on the equation v™*! =" + A{Lv™ — p), where A
is the relaxation parameter, m is the relaxation counter, and
v™ is an approximation to the solution ©° which is defined
on the base grid G° (Do not be confused by the super-
scripts—u® refers to the solution on the base grid G°, while
v™ refers to the mth iteration of v.) The iteration in m con-
tinues until »™ is sufficiently close to the exact solution u, as
measured by the value of the residual, R=p— Lv™. We
choose 4 so that the term v{" does not appear in the right-
hand side of the equation for v} *'; ie,, 1= —1/C,, where
Co= —128/(304%) is the coefficient of the v; term in the
definition of (4"y),.

Recall the definition of face points, edge points, and cor-
rer points from above, We define the coarsening operator,
7€, such that R°** = J° R for each component of i even,
by

LI

1

Rci:/%arse _ (SR?nc + 2 Rﬁne

64

corner points

+2 Y R™ 44

edge points

» R““‘).

face points

The coarsening operator is used to average the residuals;
the velocity is coarsened using a simple projection, P,
defined by

{(Pu"); = uy.

ALMGREN, BUTTKE, AND COLELLA

We define the interpolation operator [ in the interior of a
grid as simple trilinear interpolation.

Let [ .,=log; M. Then in keeping with the notation of
the previous section, we define G', 0272/, as the /th
level grid, where /=0 is still the base level grid. Each grid
covers all of 2. Note that these new grids are coarser than
the base grid, and / for these grids is negative. The solution
of the equation 4™u° = p° is found as follows. Note that
the / in ¢', ¢, and R refers to the level, not the relaxation
counter:

R® = p° — A™°,

While (|R% <)
R%:=p—4%°
e? .= MGRelax(0, R, k)
v? =0+ &°

EndWhile

u’ i=10"
ProcenpurRe MGRelax(/, R, k).

el =0

e’ :=Relax(R', &', h,)

If (> },,) then
hy_, =2k,
R-1 = ISR — a"e",
e!~1:=MGRelax(/ — 1, R=Lh )
e =t ITe' L
e’ :=Relax(R', ¢, 1))

Endif

Return &'

Here, and in what follows, Relax(p’, #/, #,) is a procedure
that performs a point relaxation for the operator A%, given
a right-hand side p’ and an initial guess «', and returns the
relaxed solution. The particular scheme we use here is
Gauss-Seidel relaxation with red-black ordering.

When AMR is added to the MLC, we need to sclve the
Poisson equation on each composite grid G°' for
0<I<l,,,. To solve this cquation on G°*, we must satisfy

A'yl=p!  ininteriot(G'),

and for0</< [

4"y'=0  ininterior(G")— interior(G'**)
W= Pyt inG't 1,
ul+1 =‘raul on 6Gl+1.

Note that we do not attempt to satisfy any equation with 4%
in the interior of G'*!; only the finest level equation possible
is satisfied at any given point in the domain. The equation
containing A" is satisfied on the boundary of G'*7, {20,
however, and this gives the appropriate matching condition.



FAST ADAPTIVE VORTEX METHOD IN 3D

Since the G' do not cover the entire domain G°, we need
to interpolate values from G'~' onto the boundaries of the
G, 1> 0, during each multigrid V-cycle. We use a fourth-
order interpolation function, 7%, on these boundaries, since
the boundary values are not smoothed in iterations at the
finer levels.

A single V-cycle of the modified multigrid procedure is
presented below, starting from the finest level, /=1, of G
This procedure is initialized by setting v, p' =0for 0 i</,
except that v? is set equal to the Dirichlet boundary condi-
tions on 8G°, and p' is the right-hand side induced by the
vortices on the finest grid.

We note here that the multigrid procedure with AMR is
very similar to that starting with a uniform grid (which is
why multigrid is an appropriate choice for solving the
Poisson equation on adaptive composite grids), with the
exception that the solution v’ is updated on the boundaries
for />0, and the correction ¢’ is now nonzero on 4G". The
corrections themselves carry the boundary conditions for
relaxation at the finer levels. This is in contrast to the levels
{ < 0 in multigrid, for which the boundary conditions for the
relaxation on the residual equation are homogeneous
Dirichlet when the imposed boundary conditions are
Dirichlet.

R pi— a¥if
While (|R'| <¢)

[:=1

R :=p' — Ay}

While (/> 0)

e:=0

e’ = Relax(R', ', k)

o'~ i= P+ &)

R-1— {IC(R’—A’”e’) in interior(G')
— Al elsewhere

li=1-1

EndWhile

€” := MGRelax(0, R°, h,)

0=+

=1

While (/<)

el:i=e'+I%¢'"!  ininterior(G’)
e i=el+ 1o’ on G’

e' :=Relax(R’, &, h))

v =o' e

li=1+1

EndWhile
EndWhile

TIMING RESULTS

In Table I we present the timings for a single velocity
evaluation using the direct (NM?) method, the MLC with a

S3L/113/2-3
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TABLE II

Timing Comparison for a Single Velocity Evaluation
Using the Direct (N ?), MLC and MLC with AMR Methods

Time (CPU seconds)

N Direct MLC MLC with AMR
1023 0.34 0.69 0.69
2016 1.48 1.83 1.83
3940 492 4.61 439
8766 242 158 11.1
17641 98.0 49.5 245
31988 3226 105.7 493
63759 12810 3145 104.3
Note. Calculations done for a vortex ring with N vortices on a

Cray Y-MP with the cft77 compiler.

uniform grid, and the MLC with AMR. The timings for
MLC and MLC with AMR used the optimal grid or grid
hierarchy. These calculations were done for a single vortex
ring with N vortices on a Cray Y-MP using the cft77 com-
piler. The optimal uniform grid for MLC in the table ranges
from 8° for N < 4000 to 64° for N ~ 64000. The optimal grid
refinement for MLC with AMR ranges from /_,, =0 for
N <4000 to [, =4 for N ~ 64000, with a base grid of 8. In
the MLC and MLC with AMR calculations, the correction
radius and spreading distance are C=D=1.5,

Table I1I shows a breakdown of the CPLU time for a single
velocity evaluation into the different stages of the calcula-
tion. The initial data is a pair of vortex rings as described in
the next section, with N = 39060. The base grid of each com-
putation with AMR is 8%; 8 — 32 indicates a base grid of §°
with two levels of refinement, 8 — 64 is a base grid of 8* with
three levels of refinement, and so on. The uniform grid cited
is 32°, The total timings are different than those in Table I1
because of the different number of vortices and dilferent
initial data.

TABLE Il

Time per Operation for One Velocity Evaluation Using MLC,
with Three Different Levels of AMR and for a Uniform Grid Case

Time (CPU seconds)

Operation §-32 864 B-128 32

Calculation of g#'™ 29 33 53 29
Direct calculation of boundary conditions 66 66 66 216
Solution of Poisson equation 10 24 78 1.8
Correction and interpolation of velocity field 108 166 250 108
Direct local interactions 513 229 101 513
Total time for full velocity evaiuation 726 518 548 884

Nore. Timings are on a Cray Y-MP with the cft77 compiler.
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The issue of where and by how many levels to refine the
mesh in MLC with AMR is an important one, because it is
the correct choice of refinement which allows the significant
savings in time of calculation. Ideally, we would like to have
a very simple criterion for refinement, e.g., refine whenever
the number of vortices per bin is above some N_,,, where
N nax 1s independent of level or the configuration of the vor-
tices. However, this is unrealistic, since choosing to refine

ALMGREN, BUTTKE, AND COLELLA

any cone bin may or may not lead to a larger grid at that
level, and the fact that we run the calculation on a vector
machine means that the time of the calculation is not a sim-
ple linear function of the operation count. It might be
possible to implement a refinement strategy similar to that
presented in [2], but at present the refinement strategy is
trial and error,

For the various MLC calculations, we required a suitable
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FI1G. 1. Three perspectives of the vortex rings at times ¢ =0, 16, 32, 48, 64.
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version of “infinite domain” boundary conditions in the
finite difference calculation. These were obtained by com-
puting the values of the velocity field due to the vortices on
the boundary points of the grid using the direct N-body
interaction. As we see in Table II1, for the number of vor-
tices presented here, the time spent on the boundary condi-
tion calculation was less than 10% of the total CPU time
when AMR was used. For larger problems, it is possible to
use variations on the ideas in [27 to derive faster boundary
condition algorithms as well as more general combinations
of boundary conditions.

We comment here that informal timing comparisons were
done between the MLC with AMR and an adaptive for-
mulation of a version of the fast multipole method. These
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comparisons indicated that there was an & below which the
direct method was faster than either “fast” method and that
above that N there were values of N for which cach of the
“fast” methods was fastest. We do not claim that the MLC
with AMR is faster than the fast multipole method in all
cases, rather that there are calculations where one might
prefer to use the MLC with AMR, for speed or other
considerations, such as the ability to impose boundary
conditions.

COMPUTATIONAL RESULTS

The dynamics in the region of contact between two
co-rotating inviscid “colliding” vortex rings are interesting
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FIG. 2a.

Intersection of the vortex rings from the N = 5490, § =0012 calculation with the y = 0.5 plane, Cross sections are shown at times ¢ =0, 8,

12, 16, 20, ..., 64; the time progression starts at the upper left and proceeds downwards.
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because in a short time the rings exhibit large vortex stretch-
ing and large deformation of the originally circular cross
sections. The coiliding rings “reconnect” in the sense that
the vortex lines from the two rings become very close;
however, the vortex method preserves the distinct vortex
curves. This problem has been studied previously using
vortex methods {see Anderson and Greengard [4] and
Winckelmans and Leonard [28]) and was motivated by the
cxperiments of Kambe and Takao [227 and Schatzle [26].

We present here the results from three different calcula-
tions of coiliding rings using the MLC with AMR. We use
the same ring dimensions as in [4]; however, there the
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largest number of vortex elements used was ¥ = 5490 and
the values of § were 0.010, 0.012, 0.015. In [28] the N cited
is 2200, but the ring dimensions had different ratios than
those we use. The three calculations differ in the original
resolution and/or the core radius of the vortex segments, We
will refer to these calculations as N=35490, §=00{2;
N =139060, 6 =0.012; and N = 39060, 5 = 0.006, where N is
the number of vortex segments at =0 and J is the core
radius. Note that the value of N is the initial value; by the
end of each calculation the number of computational
elements had increased through the refinement of stretched
segments as discussed earlier in the description of the

o

@

'
|
?
T

FIG. 2b.

Intersection of the vortex rings from the N = 39060, ¢ = 0.012 calculation with the y = 0.5 plane. Cross sections are shown at times 1 =0,

8, 12,16, 20, .., 64; the time progression starts at the upper left and proceeds downwards.
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method. The time step for the N =5490 calculation was
Af=25x107% the time step for the N = 39060, § =0.012
calculation was 41=1.25x10"%, and for the N = 39060,
§ = 0006 calculation the time step was 1.25x 1077 for the
first three-quarters of the calculation and 47 =0.625% 107°
for the remaining time. These time steps were chosen such
that further reduction of the time step-did not change the
results.

In our calculations, the large radius of each ring is 0.1,
and the small radius (radius of the cross section) is 0.02.
The rings were centered at (0.5 +0.125, 0.5, 0.5); then each
ring was inclined toward the other at an angle of 20° from
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the z = 0.5 plane, so that the co-rotating rings move
towards each other. During the calculations the rings were
periodically shifted in the z-direction to keep them
approximately centered in the computational domain. The
total circulation of each ring 1s 20.0, with the vorticity
uniformly distributed across the cross section.

The computational domain covers the box [0, 1]°. The
rings are deliberately chosen to be smalf relative to the
domain, so that boundary conditions can be defined on a
relatively coarse (8?) grid without loss of accuracy.

The initialization of the vortex segments was done as
follows: first, points equally spaced in the radial direction

FIG. 2¢c. Intersection of the vortex rings from the N = 39060, § = 0.006 calculation with the y = 0.5 plane. Cross sections are shown at times =0,
8, 12, 16, 20, .., 64; the time progression starts at the upper left and proceeds downwards.
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FIG. 3. Time evolution of the average separation of the closest cross sections of the vortex rings for the three calculations.
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FIG. 5. Time evolution of the normalized energy for the three calculations.

were placed within the cross section of each ring., For the
N = 5490 calculation, there were four radial locations and a
center point; the radial location at r=n dry, n=1, ..., 4, had
6n points equally spaced at 8 =m A0, m=1, .., 6n, where
48, =(1/n){n/3). The N=39060 calculations had eight
radial locations and a center point; the radial location at
r=ndr,, n=1,.,8, aiso had 6n points spaced at
O=mdl,, m=1,.,6n. Here A4r;=(0.02)/45 dr,=
{0.02)/8.5. A curve through each point was then traced out
in the azimuthal direction around the central axis of the
ring. These curves were approximated by N,-sided
polygons as described earlier. There were 61 filaments and
originally 45 segments per filament in the N = 5490 calcula-
tion; there were 217 filaments and originally 90 segments
per filament in the N = 39060 calculation.

Figure 1 shows three perspectives of the two vortex rings
at times =0, 16, 32, 48, 64, from the ¥ = 39060, § =0.012
calculation. These integer times are multiples of the time
step A1=2.5x 107> of the N = 35490 calculation; t =64 is
also the final time computed in [4]. Shown in this figure are
the computational elements, the vortex segments connected
into closed filaments. In this calculation there are 217
filaments per ring; here, however, only the outermost
filaments (at » = 8Ar } are shown.

The area of interest in this calculation is the region of con-
tact between the two rings. Figures 2a—c show the evolution
of this region in time {or the three calculations. The intersec-
tion of each ring with the y=0.5 plane is shown at times
1=0,8 12,16, 20, ..., 64; this intersection contains 61 or 217
{for N=5490 or N = 39060, respectively} points per ring,
each point representing a filament. The filaments which
were originally at the same radial distance from the center
of the cross section are then connected on the plot. Thus, at
r=1{ we see concentric circles, but as the rings approach
each other the cross sections become very noncircular,

We see from Figs. 2a—c that the overall development of
the ring in the three caleulations is very similar for ¢ < 48
and begins to vary after t =48. At t = 64 the most pronoun-
ced difference is the presence of “arms” in the N = 5490
calculation; these “arms” do not appear in either of the
N=739060 calculations, nor in the N=23904, §=0.012
calculations of [4]. (Our calculations with N = 5490 were
repeated using the direct method to verify that the MLC
with AMR was not responsible for the obhserved
phenomena; there is no distinguishable difference between
the calculations using the direct method and the MLC with
AMR.) Since these features do not appear in the more
refined calculations, we conclude that they result from insuf-
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ficient resolution of the ring. In [47, the initial placement of
vortices is on a rectangular rather than on a circular grid,
and the arms do not appear; we suggest that the difference
in the initial gridding is responsibie for the difference in the
results and that, therefore, this calculation is underresoived.

We have also observed that the large-scale deformation,
shown in Fig. 1, is almost identical for the three calcula-

.60 —r
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tions, Figure 3 shows the time evolution of the average
separation in the x-direction of the cross sections of the
rings shown in Fig. 2, and we see very similar qualitative
behavior of the different calculations. Figure 4 shows the
evolution of the maximum vorticity in time, normalized so
that the initial vorticity in each calculation is given a value
of 1.0; again, the qualitative behavior is quite similar among
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FIG. 6a. Velocity and ring cross sections at ¢ =40, y =0.5, from the N = 39060, d = 0.012 calculation.
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the calculations. The quantitative agreement is strong until
¢ & 38; after this all the curves show a sharp rise, but we do
still observe differences due to different 4. Figure 5 shows
the time evolution of the energy E{r), normalized by the
value E£(f =0). The encrgy is defined as
N
E(y=73 3, u(x}, 1) (rx (1)),

i=1
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where r is the vector from the origin to xf. There is no
explicit mechanism in the vortex method formulation to
conserve energy, so the extent to which energy is conserved
is a useful diagnostic.

The similarities seen here between the different calcula-
tions are consistent with the results in [4], which are from
calculations with N =3904 calculations and & =0.010,
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FIG. 6b. Velocity and ring cross sections at ¢ =48, y = 0.5, from the N = 39060, = 0.012 calculation.
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0.012, and 0.015. There the overall evolution of the cross
section in time is relatively independent of cross section
until =48, and the average separations have the same
behavior as those presented here.

From the above figures we conclude that the calculations
have converged until ¢ = 40 in vortex spacing for a fixed é
{compare the N=35490, §=0012 and the N=39080,
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§=0.012 calcuiations) and are showing similarities as §
decreases. We do not claim to have achieved convergence
as ¢ — 0, since computations for smailer § are still
prohibitively time-consuming, even with a fast method.
One indication of the resolution of the calculation is the
extent 1o which nearby filaments undergo similar stretching,
As we can see in Fig. 1, all of the stretching of the filaments
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FIG. 6¢. Velocity and ring cross sections at 1 = 56, y =0.3, from the ¥ = 39060, é = 0.012 calculation.
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occurs in the region of contact between the rings; the rest of
each ring undergoes virtually no stretching or deformation.
However, even within the region of contact the maximum
amount of stretching per filament varies significantly. To
illustrate this, we measured the number of filaments per ring
which contain vortex segments which have stretched at least
0.6 times the maximum value of stretch at that time. At
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t = 48 for the N = 39060, & =0.012 calculation, that number
is 76 out of 217, over one-third. However, at ¢ = 56 the num-
ber has decreased to 22 flaments per ring, and by (=64
only 13 filaments have stretched even 60 % of the maximum
amount. Only five filaments at ¢ = 64 have stretched 80% or
more of the maximum stretch at that time; ony two
filaments have stretched 90 % or more.
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FIG. 6d. Velocity and ring cross sections at ¢ =64, y = 0.5, from the N = 39060, § =0.012 calculation.
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For the N =139060, 6 =0.006 calculation the number of
filaments per ring at t =48 which have stretched more than
60 % of the maximum stretch is only 53 of 217; by 1 = 64 this
has reduced to five filaments. There are only two filaments
which have stretched 80% or more of the maximum value.
We see Irom this that the value of maximum stretch that we
measure at late times depends on the behavior of only a few
distinct filaments, and we would need to compute with even
more filaments to ensure that we had adequately resolved
the intense vortex stretching. However, the absolute
magnitude of this stretching seems not to affect the overall
late-time dynamics more sirongly because all of the
filaments which undergo large stretching lie along the plane
of contact of the rings. By symmetry, the corresponding
filaments on the two rings undergo the same stretching, and
we obtain the most complete canceilation of precisely these
filaments.

ALMGREN, BUTTKE, AND COLELLA

In order to better understand the overall evolution of the
region of contact between the rings, we superimposed the
cross sections of the rings from the N =39060, 6§ =0.012
calculation onto a plot of the velocity field in the y=0.5
plane at times /=40, 1 =48, =156, and 7= 64 (see
Figs. 6a—d). In these figures only the filaments at every other
radial station are plotted, for clarity.

At carly times in these calculations, the rings are distinct
from one another, and the velocity field can be viewed as a
simple superposition of the self-induced velocities of two
rings. The velocity which a vortex ring induces upon itseif
can be broken into two main flows: a uniform translational
velocity, here downward and toward the other ring; and a
rotation around the core. The translational velocity moves
the rings towards each other, and the rotation about the
core can be seen in Fig. 2 quite clearly. However, when the
rings approach each other, the presence of the core of one
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FIG. 7a. Velocity and ring segments at ¢ =40, |x -~ 0.5] <0.03, from the & = 39060, ¢ = 0.012 calculation.
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ring interferes with the rotation of the core of the other, and
the cores begin to flatten against each other.

We see at r=40 (Fig. 6a) that the cores have begun to
flatten, but the rotational velocity field is still approximately
centered at the centers of the cross sections. However, by
t=48 (Fig. 6b) there is sufficient cancellation of vorticity in
the filaments in each ring closest to the other ring that the
rotational velocity field has moved its center outwards from
the center of the cross section. By 1= 56 the velocity field as
seen in Fig. 6¢ swirls around a point on the edge of each
cross sectionn. This can only result from the cancellation of
vorticity along the plane of contact.

We can see in these plots an explanation of the formation
of “arms” in the N = 5490, § =0.012 calculation. In Fig. 2a
at t =48 we see the beginning of the arms at the top of each
cross section. The "arm” on each core begins as a small
protuberance at + =48, which can be explained by a single
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{or few) vortex segments being swept upwards by the strong
velocity field in the region between the rings. These
protuberances are then swept around the cross sections by
the velocity field shown in Fig. 6b and 6c. Rather than this
fluid being swept back into the *head,” as it would have
been had it been closer to the x =0.5 plane, it is swept out-
side the center of the rotational velocity, forming the
separate “arm” structure. This only occurs in the coarser
calculations, we suspect, because in the more refined
calculations the velocity gradient between adjacent filaments
is not so large; hence a single (or few) filament is less likely
to become separated, as is necessary for the formation of the
arms,

It is the velocity in the y-direction which is responsible for
the dramatic vortex stretching along the filaments. In
Figs. 7a~-d, we superimposed all vortex segments at the
outer radial station (r=84r,} of one ring which were
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located in the slab |x — 0.5] < 0.03 onto a plot of the velocity
in the x=0.5 plane. In these plots the remaining segments
of each filament should extend behind the page; we are
looking at one ring from the vantage point of the other ring.
In Figs, 72 and 7b {t =40 and ¢ = 48) we see that the domi-
nant component of the velocity in the y—z plane is in the
z-direction, which is the field resulting from two independ-
ent rings. However, when the rings begin to form the joint
“head—tail” structure they generate a stronger velocity com-
ponent in the y-direction, and it is this straining field which
causes the vortex stretching. This vortex stretching causes
the tail, which initially is primarily one-dimensional, to
become more sheet-like in the x = 0.5 plane.

It is important to note the scale of the plots. Even by
t =56 the “head™ structure is entirely containined within
one core radius 4 = 0.012. Thus the interaction of every pair
of vortices within the head (for a given y = constant cross

ALMGREN, BUTTKE, AND COLELLA

section} is mollified by the smoothing function. However, all
the filaments do not lie within a single § = 0.006 core radius,
and this may account for the differences seen between the
two N=39%060 calculations. More specifically, this may
account for the difference in the maximum rate of stretching;
for 6=0.012 the maximum stretch at r=64 is 38; for
& =10.006 the maximum stretch at + =64 is 271, over seven
times greater.

Another feature of the vortex dynamics in the region of
contact is the intense folding of adjacent segments along a
filament. In the N = 39060 calculations, the angle between
any two adjacent segments at r =0 was 3.07 radians (176°);
at t = 64 the minimum angle between two segments was 1.59
radians (91.1°) for the 6 =0.012 calculation, and 0.085
radians {4.9°) for the d = 0.006 calculation. Thus in the iat-
ter calculation we observe the formation of “hairpins,” pairs
of almost antiparallel adjacent segments.
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A preliminary version of segment refinement, based on
curvature in addition to stretching, was implemented in an
attempt to maintain better resolution along individual
filaments. When this strategy, which maintained the mini-
mum angle between segments above 2.65 radians (151°),
was used for the N=5490, §=0.012 and the N = 39060,
6 =10.012 calculations, many more vortices were introduced
in the second half of the calculation, but the benefit of the
additional refinement was ambiguous. The filaments did
remain smoother, but the shape of the cross sections and the
value of maximum stretch were not significantly affected,
other than the elimination of the “arms” in the & = 5490
calculation. However, the arms were also not present in a
N = 10980, 6 =0.012 calculation, which had 61 filaments
and initially 90 segments per filament. In fact, the number of
vortex elements at ¢ = 64 for the N = 5490 calculation with
curvature refinement was only slightly below (11304 vs
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11816) the final number of segments for the N = 10980
calculation, and conservation of energy was much better
maintained in the N = 10980 calculation.

CONCLUSIONS

We have presented an algorithm for solving incom-
pressible flow problems which combines adaptive mesh
refinement (AMR) with the MLC into a fast adaptive three-
dimensional vortex method. This new method maintains the
accuracy of the MLC while achieving significant speedup
for large number of vortices. Calculations of two colliding
inviscid vortex rings using the MLC with AMR show that
the resolution with which these rings had previously been
studied was not in fact adequate to resolve the small-scale
structure. However, using the MLC with AMR, we were
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able to compute with twice the resolution in each spatial

di

mension, thus demonstrating the usefulness of the new

fast method.
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